Da Administração Oral Ao Efeito Terapêutico

Medicamento

Administração

Desintegração Desagregação **Dissolução**

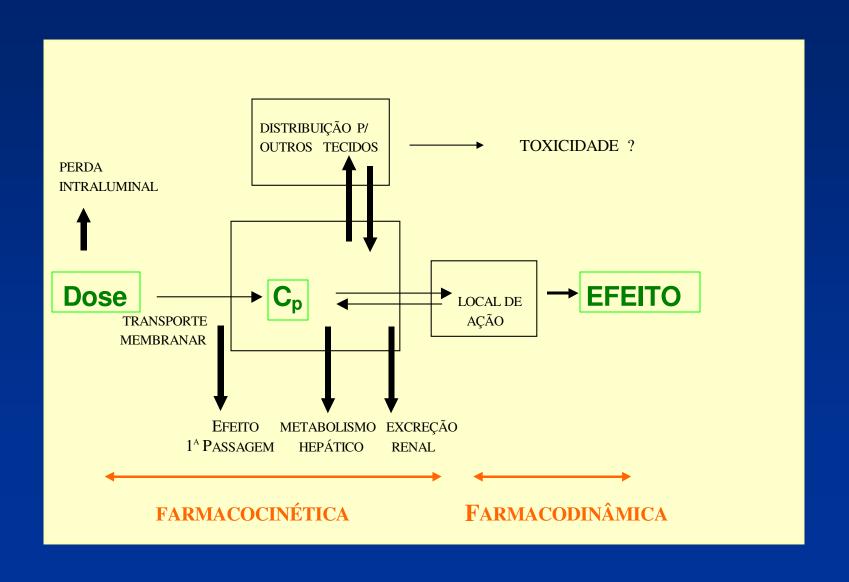
ETAPA BIOFARMACÊUTICA

Fármaco em solução

Absorção Distribuição Eliminação

FARMACOCINÉTICA

1

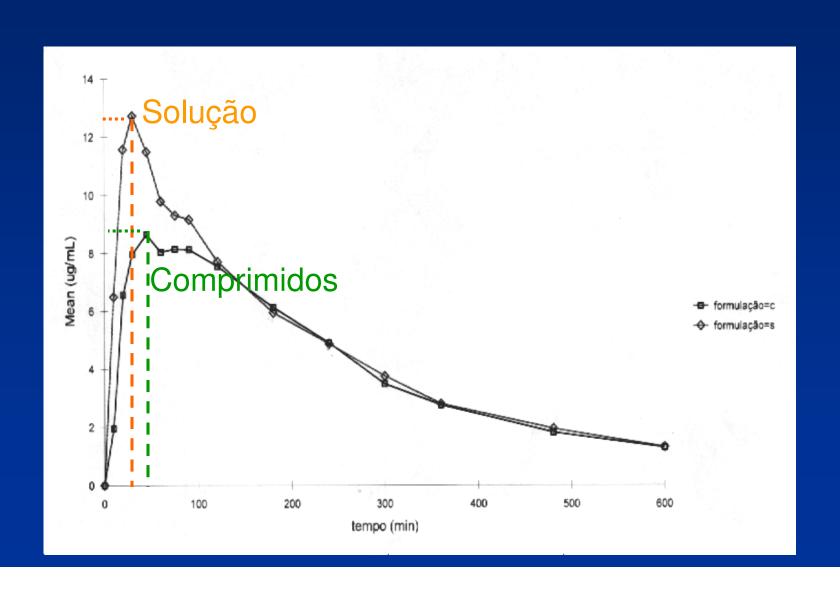

Fármaco na biofase

Interação Fármaco-Receptor

FARMACODINÂMICA

EFEITO TERAPÊUTICO

A relação entre intensidade / duração do efeito e a dose do fármaco administrada é uma função da sua FARMACOCINÉTICA e FARMACODINÂMICA


ETAPA FARMACÊUTICA

FÁRMACO DISSOLVIDO

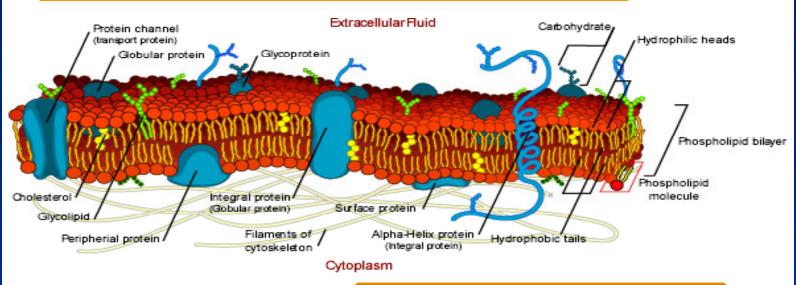
Paracetamol: Comprimidos *vs* Solução oral

ABSORÇÃO

• <u>DEFINIÇÃO</u>

Processo pelo qual um fármaco é transportado do seu sítio de administração até a circulação local

VIA DE ADMINISTRAÇÃO IDEAL


Via oral: - Facilidade de administração

- Adesão

- ABSORÇÃO POR VIA ORAL
 - Dissolução
 - Transporte transepitelial
 - Efeito de primeira passagem

DIFUSÃO PASSIVA

CARACTERÍSTICAS DA MEMBRANA CELULAR

LEI DE FICK

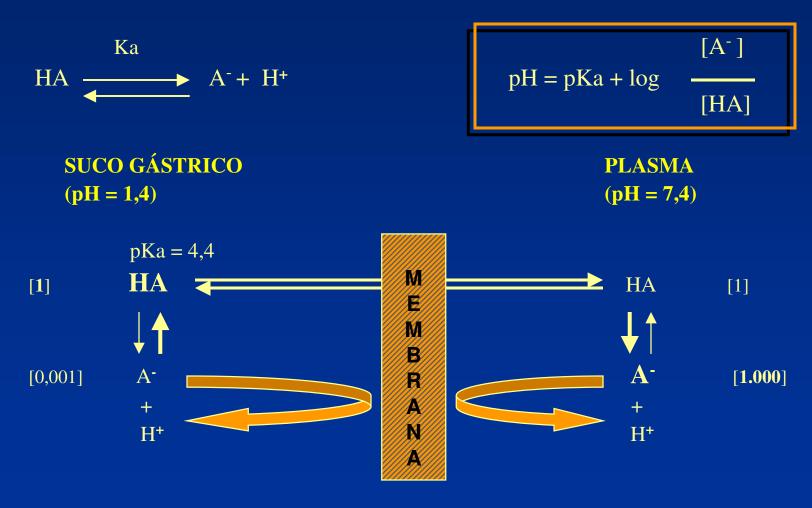
$$m / t = P_k \cdot A \cdot (C_e - C_i)$$

P_k: Coeficiente de permeabilidade

Coeficiente de partição octanol-água

pontes hidrogênio

área de superfície polar


A: Área da membrana de contato

(C_e - C_i): Gradiente de concentração da forma não ionizada

GRAU DE IONIZAÇÃO: pH e pKa

• EQUAÇÃO DE HENDERSON-HASSELBALCH

O grau de ionização de um fármaco depende do seu pKa e do pH do meio.

Somente a forma n\u00e3o-ionizada atravessa a membrana

TRANSPORTE TRANSEPITELIAL NO INTESTINO: BARREIRA FÍSICA

VIA TRANSCELULAR:

Difusão passiva Difusão facilitada Endocitose

VIA PARACELULAR:

 A via transcelular (difusão passiva através da membrana do enterócito) é o principal mecanismo de transporte para fármacos com PM > 200 Da, qualquer que sejam suas propriedades físico-químicas

TRANSPORTADORES DE PEPTÍDEOS E ABSORÇÃO DE FÁRMACOS

- Natureza: PEPT1 e PEPT2
 - co-transportadores di/tri-peptídeos com *H
- Localização: intestino delgado
- Substratos (peptidomiméticos)
 - Antibióticos (β-lactamas)
 - ACE inibidores
 - Inibidores de aminopeptidases
 - Pró-fármacos (↑F): ex: L-valil éster de aciclovir

FÁRMACOS E SISTEMAS DE TRANSPORTE ABSORPTIVOS

L-DOPA, Baclofeno, Mefalan:

Transportador amplo de AA neutros, acoplado à Na⁺

Cefalosporina, Valaciclovir, β-lactamas: *Cotransportador H*-oligopeptídeo*

Atorvastatina:

Transportador de ácido monocarboxiclico

Pravastatina:

Transportador de ánion orgânico (OATP)

Fosfomicina:

Transportador de fosfato

JANELAS DE ABSORÇÃO

I. TRANSPORTE PASSIVO E pH:

Estômago	1 - 3	2-5	
Duodeno	4 - 6,5	4,5 - 6	
Jejuno	6 - 7		
Ìleo	6,8 - 8		
Colo	7-8		


II. TRANSPORTE ATIVO:

Duodeno.

Ex. Transportador de Di/Tri peptídeo (Cefalosporina)

TRANSPORTE TRANSEPITELIAL NO INTESTINO: BARREIRA BIOQUÍMICA

- BARREIRA ENZIMÁTICA: | Borda estriada (E_{be}) | Enzima intracelular (E_{in})
- SISTEMA DE EFLUXO: Glicoproteina P (G_P)

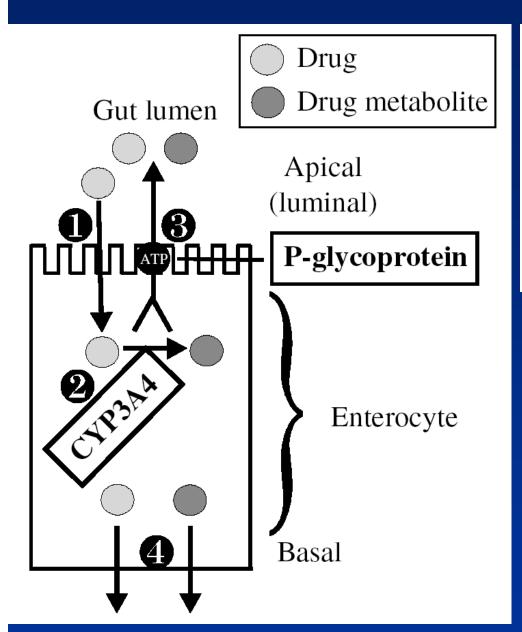
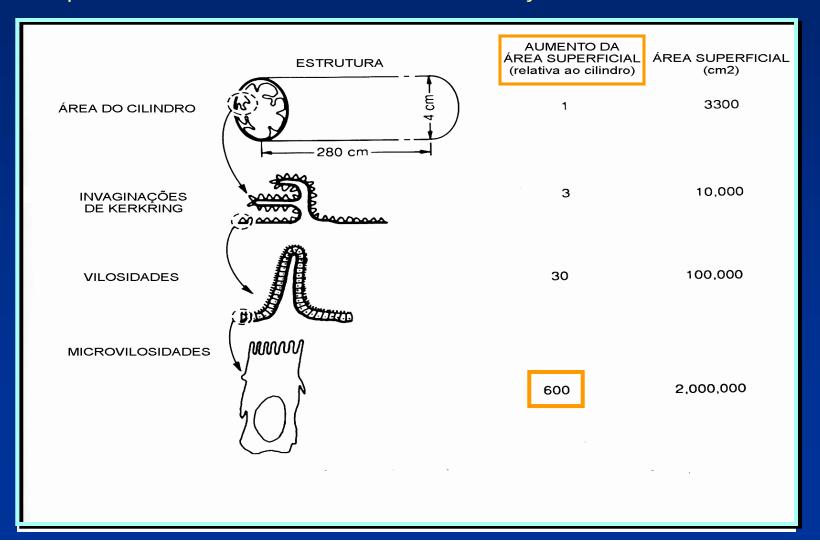



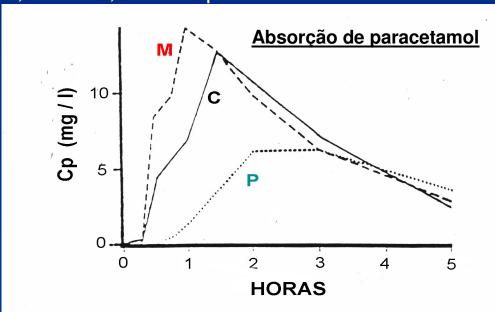
Figure 1 A scheme of the proposed functional interaction between CYP3A4 and P-glycoprotein in human enterocytes. (1) Drug absorption via passive diffusion or carrier-mediated processes from the lumen of the gastrointestinal tract into the enterocyte. (2) CYP3A4-mediated metabolism. (3) Transport of the parent drug and/or its metabolite(s) from the enterocyte into the gut lumen by P-glycoprotein. (4) Translocation of the drug and/or its metabolite(s) across the basal membrane of enterocytes via passive diffusion or carrier-mediated processes into the portal vein. Reproduced from Ref. [26] with the permission of Blackwell Publishing (Oxford, UK).

ÁREA DA SUPERFÍCIE DE CONTATO

 O intestino delgado oferece três mecanismos para aumentar a área da superfície de contato e assim facilitar a absorção de fármacos

ESVAZIAMENTO GÁSTRICO

Quanto mais rápido o esvaziamento gástrico, mais rápida será a absorção


ESTÍMULO

No Estômago:

distensão, proteínas digeridas

Angústia, agressão

Álcool, cafeína, metoclopramida

INIBIÇÃO

No Duodeno:

distensão, gorduras, HCl

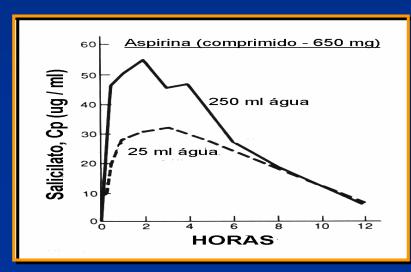
Dor, depressão

Anti-ácidos, Anticolinérgicos

M: + Metoclopramida

(10 mg - i.v.)

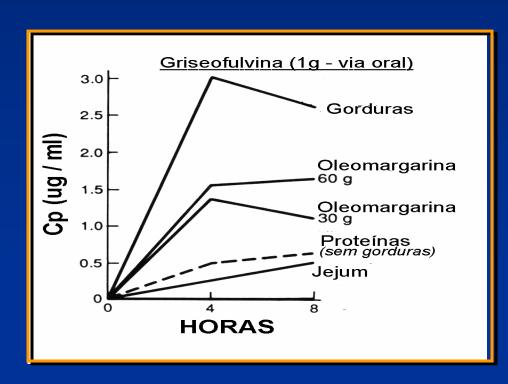
C: Controle


P: + Propantelina (30 mg - *i.v.*)

INFLUÊNCIA DA COMIDA: pH e Lipídios

ALTERAÇÕES NA FISIOLOGIA PÓS-PRANDIAL :

• ALTERAÇÕES NA BIODISPONIBILIDADE


A. Classicamente: A absorção é reduzida ou ao menos retardada (fármacos hidrosolúveis com alto P_k)

Geralmente, a
 biodisponibilide do
 fármaco é maior quando ingerido de jejum e com um grande volume de líquido

INFLUÊNCIA DA COMIDA: pH e Lipídios

- ALTERAÇÕES NA BIODISPONIBILIDADE
 - B. Caso a caso: A absorção pode ser aumentada significativamente em função do maior tempo de permanência no pH ácido do estômago e do aumento da secreção de sais biliares

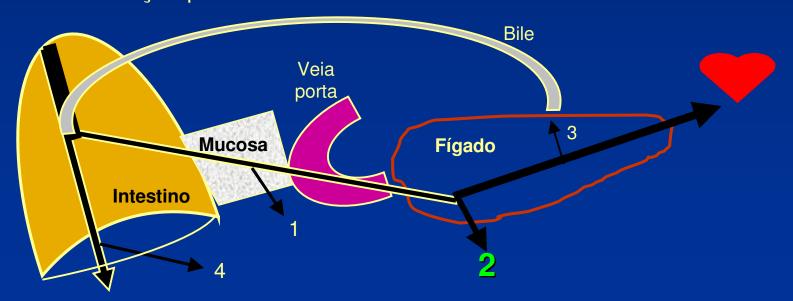
 A biodisponibilidade de fármacos muito pouco hidrosolúveis aumenta quando ingeridos junto com alimentos ricos em gorduras

FATORES INFLUENCIANDO A ABSORÇÃO POR VIA ORAL

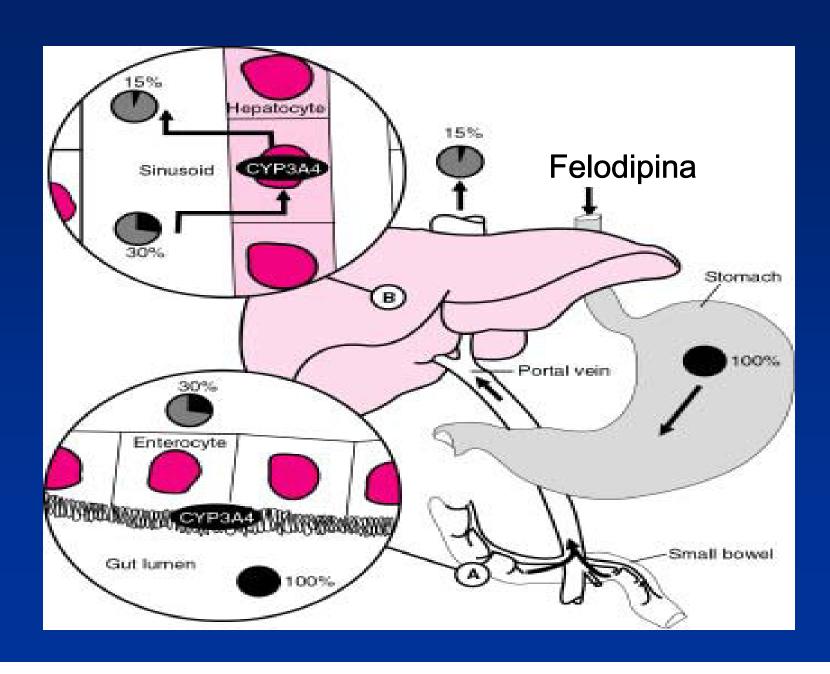
Fatores Físico-químicos

- hidrofobicidade
- peso molecular
- conformação molecular
- pKa
- estabilidade química
- solubilidade
- complexos
- tamanha da partícula
- forma cristalina
- agregação
- pontes hidrogênio
- área da superfície polar

Fatores Fisiológicos


- área superfície contato
- trânsito e motilidade
- pH (lumen+superfície)
- esvaziamento gástrico
- enzimas
- permeabilidade membrana
- comida
- doenças
- interação medicamentosa
- muco e UWL
- fluxo de água
- fluxo sanguíneo
- bacterias
- efeito de 1ª passagem

EFEITOS DE PRIMEIRA PASSAGEM


DEFINIÇÃO
 Eliminação pré-sistêmica

NATUREZA

- 1. Metabolização pelas células da mucosa intestinal
- 2. Metabolização pelos hepatócitos
- 3. Secreção biliar
- 4. Metabolização pela flora intestinal

EFEITOS DE PRIMEIRA PASSAGEM

O BINÔMIO PERMEABILIDADE - SOLUBILIDADE

SOLUBILIDADE

Um fármaco deve ser suficientemente solúvel em meio aquoso para ser absorvido

Ex: Indinavir: $F \downarrow < \downarrow$ hidrosolubilidade Sulfate de Indinavir: \downarrow pH camada difusão $\rightarrow \uparrow$ S e F

PERMEABILIDADE

Quanto maior a lipofilicidade, maior a permeabilidade (mas também a depuração e o efeito de primeira passagem)

Ex: Tioconazole: F ↓ < ↑ efeito de primeira passagem < ↑ lipofilicidade

Fluconazole: ↓ lipofilicidade → ↑ estabilidade metabólica e F

O SISTEMA DE CLASSIFICAÇÃO BIOFARMACÊUTICO

 OBJETIVO: PREVER O TIPO DE CORRELAÇÃO ENTRE O TESTE DE DISSOLUÇÃO DO FÁRMACO IN VITRO E A BIODISPONIBILIDADE (IN VIVO)
 [para formas sólidas orais de liberação rápida]

CLASSE	SOLUBILIDADE	PERMEABILIDADE	CORRELAÇÃO
1 (diltiazem)	ALTA	ALTA	POSSÍVEL*
2 (nifedipina)	BAIXA	ALTA	PROVÁVEL**
3 (insulina)	ALTA	BAIXA	INCERTA
4 (taxol)	BAIXA	BAIXA	IMPROVÁVEL

^{*} se V_{dissol} < $V_{esvaziamento gástrico}$

ABSORÇÃO ORAL: MÉTODOS DE AVALIAÇÃO

IN VITRO, BIOFÍSICOS

- Coeficiente de partição
- Número de pontes hidrogênio
- Área de superfície polar
- Cromatografia

• IN VITRO, BIOLÓGICOS

- Aneis de intestino
- Saco intestinal invertido
- Células em cultura (CACO-2)
- Câmara de *Ussing* para intestino

IN VIVO, BIOLÓGICOS

- Perfusão in situ (rato)
- Perfusão intestinal (homem: loc-I-gut)
- Biodisponibilidade